Partie 1

Bac 2022 Metropole1 : Exercice 3

Cet exercice porte sur les représentations binaires et les protocoles de routage, et les arbres couvrant sur un graphe.

On verra dans ce sujet que le routage sur internet demande :

- des opérations sur les graphes
- des opérations régulières de tri
- de manipuler des arbres

1.1 Question 1

Une adresse IPv4 est représentée sous la forme de 4 nombres séparés par des points. Chacun de ces 4 nombres peut être représenté sur un octet.

A. Donner en écriture décimale l'adresse IPv4 correspondant à l'écriture binaire :

11000000.10101000.10000000.10000011

B. Tous les ordinateurs du réseau A ont une adresse IPv4 de la forme : 192.168.128.___ , où seul le dernier octet (représenté par _ _ _) diffère. Donner le nombre d'adresses différentes possibles du réseau A.

1.2 Question 2

On rappelle que le protocole RIP cherche à minimiser le nombre de routeurs traversés (qui correspond à la métrique). On donne les tables de routage d'un réseau informatique composé de 5 routeurs (appelés A, B, C, D et E), chacun associé directement à un réseau du même nom obtenues avec le protocole RIP :

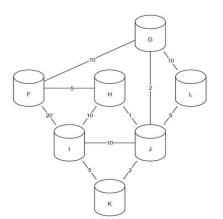
Routeur A		Routeur B	Routeur B		Routeur C		
Destination	Métrique	Destination	Métrique		Destination	Métrique	
Α	0	Α	1		Α	1	
В	1	В	0		В	2	
С	1	С	2		С	0	
D	1	D	1		D	1	
Е	2	Е	2		E	2	
Routeur D		Routeur E					
Destination	Métrique	Destination	Métrique				
Α	1	Α	2				
В	1	В	2				
С	1	С	2				
D	0	D	1				
Е	1	Е	0				

FIGURE 1 – tables de routage

- A. Donner la liste des routeurs avec lesquels le routeur A est directement relié.
- B. Représenter graphiquement et de manière sommaire les 5 routeurs ainsi que les liaisons existantes entre ceux-ci.

Reseaux 3 Exercices - Routage

1.3 Question 3


Le protocole OSPF est un protocole de routage qui cherche à minimiser la somme des métriques des liaisons entre routeurs.

Dans le protocole de routage OSPF le débit des liaisons entre routeurs agit sur la métrique via la relation : $metrique = \frac{10^8}{debit}$ dans laquelle le débit est exprimé en bit par seconde (bps).

On rappelle qu'un kbps est égal à 10^3 bps et qu'un Mbps est égal à 10^6 bps.

A. Recopier sur votre copie et compléter le tableau suivant :

Débit	100 kbps	500 kbps	?	100 Mbps
Métrique associé	1000	?	10	1

Routeur F

Destination Métrique
F 0
G 8
H 5
I
J
K
L

FIGURE 2 - graphe du reseau

Les nombres présents sur les liaisons représentent les coûts des routes avec le protocole OSPF.

- B. Indiquer le chemin emprunté par un message d'un ordinateur du réseau F à destination d'un ordinateur du réseau I. Justifier votre réponse.
- C. Recopier et compléter la table de routage du routeur F.
- D. Citer une unique panne qui suffirait à ce que toutes les données des échanges de tout autre réseau à destination du réseau F transitent par le routeur G. Expliquer en détail votre réponse.

1.4 Question 4

A. Donner les caractéristiques du graphe de réseaux schématisé plus haut.

On donne cette fois le tableau constitué à partir de l'algorithme de Dijkstra, appliqué à ce même graphe de reseaux :

- le colonnes représentent les sommets à atteindre
- les lignes sont les sommets de départ
- On renseigne dans les cases la distance cumulée depuis le noeud F, jusqu'au noeud de la colonne, en passant par le noeud adjacent de la ligne. Par exemple, I peut être atteint en venant du noeud H avec une longueur de 15.

_						
	G	Н	I	J	K	L
F		5				
G						
Η			15	6		
I						
J	8				8	11
K						
L						

- B. Représenter le graphe des chemins pour explorer depuis F les autres noeuds, en suivant le chemin *le plus court*.
- C. Ce graphe représente l'arbre couvrant du graphe. Donner les caractéristiques de cet arbre.
- D. Quel est le chemin le plus court pour aller de F à G?
- E. Même question, mais cette fois pour aller de H à K.